

PREGNANE GLYCOSIDES FROM AN ANTITUMOUR FRACTION OF *PERIPLOCA SEPIUM*

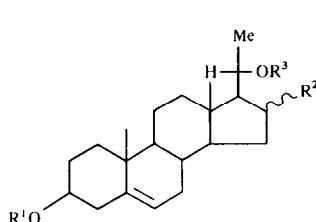
HIDEJI ITOKAWA, JUNPING XU and KOICHI TAKEYA

Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, 192-03 Tokyo, Japan

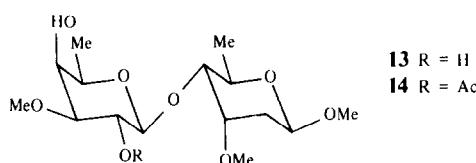
(Received 5 August 1987)

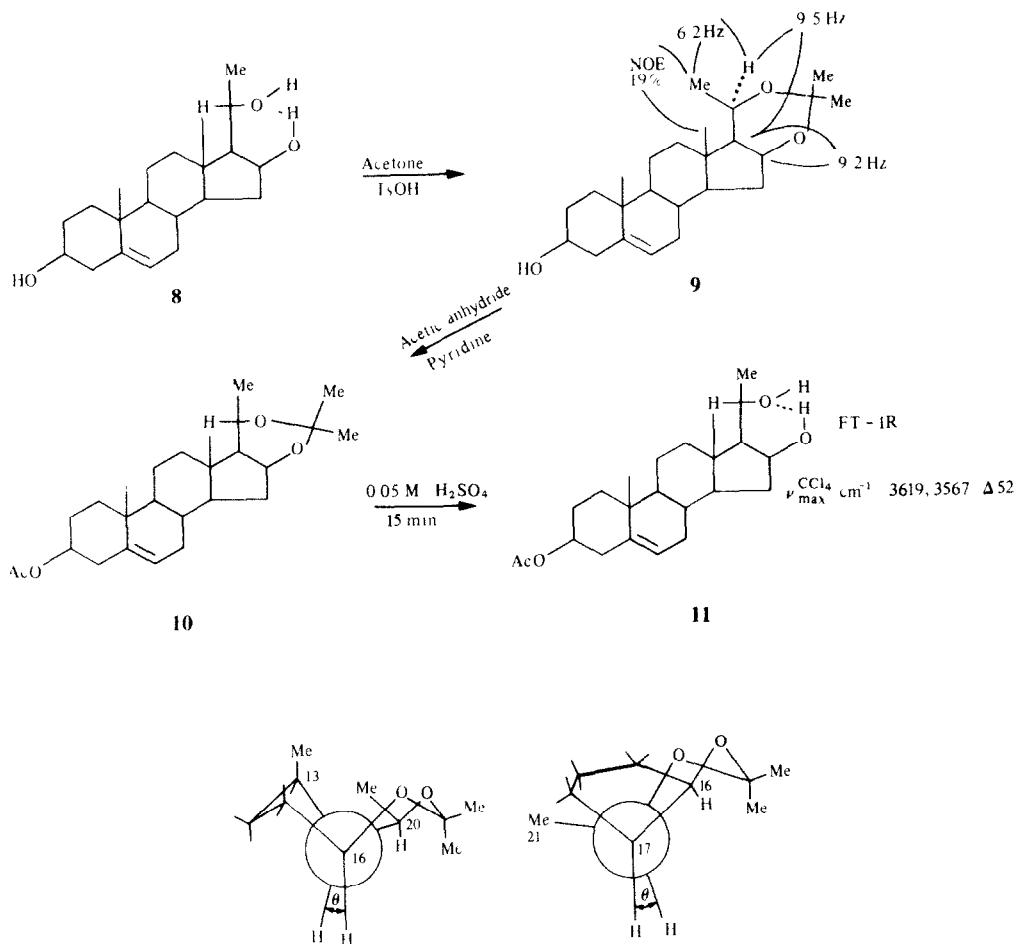
Key Word Index—*Periploca sepium*, Asclepiadaceae, pregnane glycoside, Δ^5 -pregnene-3 β ,16 β ,20(R)-triol, Δ^5 -pregnene-3 β ,16 α ,20(S)-triol

Abstract—Three new pregnane glycosides (S-4a, S-5 and S-10) and two known pregnane glycosides (S-4b and S-6) were isolated from an antitumour fraction of the root barks of *Periploca sepium*. Their structures were determined by ^1H and ^{13}C NMR, FABMS and SIMS spectroscopy and some chemical transformations. One of the glycosides (S-4a) contained the new aglycone Δ^5 -pregnene-3 β ,16 β ,20(R)-triol.


INTRODUCTION

In two earlier papers [1, 2], we reported on the isolation of eight substances (S-1–S-8), four of which we characterized, from the antitumour fraction prepared by subjecting the chloroform extract of *Periploca sepium*. The present paper deals mainly with the separation and characterization of three new pregnane glycosides (S-4a, S-5 and S-10) and two known glycosides (S-4b and S-6).


RESULTS AND DISCUSSION


The mixture of pregnane glycosides designated S-4 gave S-4a (**1**), S-4b (**2**) and S-10. **1** and **2** showed the same molecular ion peak as a cationized cluster ion $[\text{M}(\text{C}_{56}\text{H}_{92}\text{O}_{25})+\text{Na}]^+$ at m/z 1187 and $[\text{M}+\text{K}]^+$ at m/z 1203 on FABMS. On acid hydrolysis with 1 M H_2SO_4 in 50% aqueous methanol, **1** and **2** yielded the aglycones **8** and **12** respectively, and, as shown by TLC, the sugars D-cymarose, D-digitalose and D-glucose.

8 exhibited a molecular ion peak at m/z 334 [M^+ , $\text{C}_{21}\text{H}_{34}\text{O}_3$] in its EIMS. Comparison of the ^1H and ^{13}C NMR and MS data with those of Δ^5 -pregnene-3 β ,20(S)-diol [1], indicated that **8** had one additional hydroxyl group at C-16 [δ 72.92 (*d*) and δ 4.50, *ddd*, J = 7.8, 5.5 and 2.3 Hz]. In spite of the absence of a hydroxyl group at either C-15 or C-17 an acetonide (**9**) of **8** was easily prepared between the two hydroxyl groups at C-16 and C-20. Decoupling of the signals at δ 1.20 (Me-21), 3.85 (H-20) and 4.16 (H-16) of **9** revealed that the coupling constants were $J_{17,20} = 9.5$ Hz and $J_{16,17} = 9.2$ Hz. Also, when the doublet signal at δ 1.31 (Me-21) was irradiated, a NOE was observed with a 19% enhancement of the intensity due to the signal at δ 0.89 (Me-18). On the basis of the above result, both dihedral angles (θ) between H-20 and H-17, and H-17 and H-16 were confirmed to be about 22° as shown in Fig. 2. Consequently, the absolute configurations of C-20 and C-16 were assigned as 'R' and ' β ', respectively, and the structure of **8** was established as Δ^5 -pregnene-3 β ,16 β ,20(R)-triol which has been isolated for the first

	R ¹	R ²	R ³
1	cym (4-1) 2-O-Ac-dig	—OH	dig (2-1) glc (6-1) glc
2	cym (4-1) 2-O-Ac-dig	—OH	dig (2-1) glc (6-1) glc
3	cym (4-1) dig	—H	dig (2-1) glc (6-1) glc
4	cym (4-1) 2-O-Ac-dig	—H	dig (2-1) glc (6-1) glc
5	H	—OH	dig (2-1) glc (6-1) glc
6	H	—OH	dig (2-1) glc (6-1) glc
7	H	—H	dig (2-1) glc (6-1) glc
8	H	—OH	H
12	H	—OH	H

time. In addition, the molecular model showed that the two hydroxyl groups at C-16 and C-20 lie close together, and it was presumed that they formed a hydrogen bond favourable for stability. In order to confirm the existence of this bond, **9** was acetylated to afford **10**, and then **10** was hydrolysed with 0.005 M H_2SO_4 in aqueous MeOH to yield **11**. The FT-IR spectrum of **11** (0.003 M in CCl_4) showed two absorption bands due to a free hydroxyl group and an intramolecular hydrogen bond (3619 and 3567 cm^{-1}). The length of the hydrogen bond was calculated as 1.98 \AA from the empirical equation presented by Kuhn [3, 4].

12 showed a molecular ion peak at m/z 334 (M^+ , $C_{21}H_{34}O_3$) in its EIMS. Its 1H and ^{13}C NMR and MS spectral data were similar to those of **8**, but the NMR spectral data due to C-16 (δ 77.62, *d* and δ 4.35, *ddd*, *J* = 7.8, 6.8 and 1.8 Hz) and C-20 (δ 70.48 and 3.91, *br q*, *J* = 6.2 Hz) of **12** were different from those of **8**. Because the acetonide of **12** involving the two hydroxyl groups at C-16 and C-20 could not be prepared in the usual way, the configuration of C-16 was deduced to be ' α '. From the above results, **12** had to be Δ^5 -pregnene- $3\beta,16\alpha,20(S)$ -triol. This was confirmed by comparing the recorded 1H NMR spectrum with the reported one for this compound [5, 6].

The 1H and ^{13}C NMR spectral data of **1** and **2** showed the presence of five anomeric proton and carbon signals in the sugar moiety, respectively. Upon partial acid hydrolysis with 0.025 M H_2SO_4 in 50% aqueous MeOH, both **1** and **2** gave **14** which had already been shown to be methyl 2-*O*-acetyl- β -D-digitalopyranosyl(1 \rightarrow 4)- β -D-ecymaropyranoside by direct comparison with an authentic sample [2], along with **5** from **1** and **6** from **2**. Also, the physical and spectral data of **5** were identical with those of S-10. Since the ^{13}C chemical shifts of **5** and **6** at C-3 were shifted upfield (-6.15 and -6.27 ppm) in comparison to those of **1** and **2**, **14** was linked to the C-3 hydroxyl group of **5** and **6**. **5** and **6** were further hydrolysed with 1 M H_2SO_4 in 50% aqueous methanol to furnish the aglycones **8** and **12**, respectively, and, as shown by TLC, D-digitalose and D-glucose. From the anomeric proton and carbon signals in the NMR spectra, **5** and **6** consisted of 1 mol of the aglycone and D-digitalose (δ 104.03, *d*, and 104.01, *d*), δ 4.62, *d*, *J* = 8.0 Hz and δ 4.72, *d*, *J* = 7.84 Hz) and 2 mol of D-glucose (δ 104.28, *d*, 104.99, *d* and 105.29, *d*, 105.48, *d*, δ 5.38, 5.47, *d*, *J* = 7.8 Hz and δ 5.13, 5.36, *d*, *J* = 7.7 Hz, respectively) and these sugars were joined by β -glycosyl linkage as can be seen from their coupling constants in Table 1.

Both acetates of **5** and **6**, which were prepared with

acetic anhydride–pyridine in the usual way, in the EIMS exhibited three fragment ion peaks due to *O*-acetylated sugars at *m/z* 821 [$\text{glc}(\text{Ac})_4\text{-glc}(\text{Ac})_3\text{-dig}(\text{Ac})$]⁺, 619 [$\text{glc}(\text{Ac})_4\text{-glc}(\text{Ac})_3$]⁺, 331 [$\text{glc}(\text{Ac})_4$]⁺ which revealed the sequence of the sugar moiety. The glycosylation shifts [7] of **5** and **6** were observed at C-20 (+12.68 and +11.52 ppm), C-6 of one glucose (+6.78 and +4.32 ppm) [8] and C-2 of digitalose (+4.83 and +5.03 ppm) [9] as shown by comparison of these signals with the corresponding ones in their aglycones, methyl glucopyranoside and methyl digitalopyranoside. Consequently, **5** and **6** were determined to be Δ^5 -pregnene-3 β ,16 β ,20(*R*)-triol 20-*O*- β -D-glucopyranosyl (1 \rightarrow 6)- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-digitalopyranoside and Δ^5 -pregnene-3 β ,16 α ,20(*S*)-triol 20-*O*- β -D-glucopyranosyl (1 \rightarrow 6)- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-digitalopyranoside, respectively. Further, based upon the above results, **1** was established as Δ^5 -pregnene-3 β ,16 β ,20(*R*)-triol 3-*O*-[2-*O*-acetyl- β -D-digitalopyranosyl (1 \rightarrow 4)- β -D-cymaropyranoside] 20-*O*-[β -D-glucopyranosyl (1 \rightarrow 6)- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-digitalopyranoside] which is a new pregnene glycoside, and **2** as Δ^5 -pregnene-3 β ,16 α ,20(*S*)-triol 3-*O*-[2-*O*-acetyl- β -D-digitalopyranosyl (1 \rightarrow 4)- β -D-cymaropyranoside] 20-*O*-[β -D-glucopyranosyl (1 \rightarrow 6)- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-digitalopyranoside] [10].

S-5 (**3**) and **S-6** (**4**) gave molecular ion peaks as cationized cluster ions at *m/z* 1124 [$\text{M}(\text{C}_{54}\text{H}_{90}\text{O}_{23})+\text{NH}_4$]⁺ and 1166 [$\text{M}(\text{C}_{56}\text{H}_{92}\text{O}_{24})+\text{NH}_4$]⁺, respectively, on FABMS. As described in the previous paper [1], **3** and **4** were hydrolysed with acid to yield the same aglycone which was confirmed as Δ^5 -pregnene-3 β ,20(*S*)-diol, and, as indicated by TLC, D-cymarose, D-digitalose and D-glucose. The ¹H and ¹³C NMR spectral data of **3** and **4** showed five anomeric proton and carbon signals due to the sugar moiety, and were very similar except for a methyl signal due to the acetyl group of **4**. **4** was hydrolysed with 0.2 M NaOH to yield **3**. Upon above partial acid hydrolysis, both **3** and **4** gave **7** along with **13** from **3** and 2-*O*-acetyl- β -D-digitalopyranosyl (1 \rightarrow 4)- β -D-cymaropyranoside (**14**) from **4**. Since deacetylation of **14** with 0.2 M NaOH provided **13**, the structure of **13** was deduced to be methyl β -D-digitalopyranosyl(1 \rightarrow 4)- β -D-cymaropyranoside.

7 was further hydrolysed with 1 M H_2SO_4 in 50% aqueous MeOH to give Δ^5 -pregnene-3 β ,20(*S*)-diol, D-digitalose and D-glucose. Anomeric signals in the ¹H and ¹³C NMR spectra showed the presence of 1 mol each of the aglycone and digitalose (δ 104.19, *d*, and δ 4.7, *d*, *J* = 7.8 Hz), and 2 mol of glucose (δ 104.40, *d*, 105.17 *d*, and δ 5.26, *d*, *J* = 7.6 Hz; 5.37, *d*, *J* = 7.8 Hz). The acetate of **7** in the EIMS showed the same three fragment ion peaks at *m/z* 821, 619 and 331 as shown by the acetates of **5** and **6**. Therefore, **7** was deduced to be Δ^5 -pregnene-3 β ,20(*S*)-diol 20-*O*- β -D-glucopyranosyl(1 \rightarrow 6)- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-digitalopyranoside, whose structure was also supported from the ¹³C NMR spectral data. On the basis of above observation, **3** was deduced to be Δ^5 -pregnene-3 β ,20(*S*)-diol 3-*O*-[β -D-digitalopyranosyl (1 \rightarrow 4)- β -D-cymaropyranoside] 20-*O*-[β -D-glucopyranosyl (1 \rightarrow 6)- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-digitalopyranoside] which is obtained from a natural source for the first time, and **4** as Δ^5 -pregnene-3 β ,20(*S*)-diol 3-*O*-[2-*O*-acetyl- β -D-digitalopyranosyl (1 \rightarrow 4)- β -D-cymaropyranoside] 20-*O*-[β -D-glucopyranosyl (1 \rightarrow 6)- β -D-glucopyranosyl(1 \rightarrow 2)- β -D-digitalopyranoside] [11].

EXPERIMENTAL

General procedures Mps uncorr, ¹H and ¹³C NMR: 400 and 100.6 MHz respectively with TMS as int standard, FABMS JEOL JMS DX-303, SIMS and EIMS Hitachi M-80 mass spectrometer

The following solvent systems were used for Kieselgel 60F₂₅₄ (Merck) and ODS (Fujigel) TLC solvent I $\text{CHCl}_3\text{-MeOH}$ (24:1), II $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$ (7:3:0.5), III $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$ (25:17:3), IV $\text{MeOH-H}_2\text{O}$ (3:2) Detection 10% H_2SO_4 spray and heating

Plant material The root barks of *Periploca sepium* used in this experiment were purchased in China. A small number of them are kept in our laboratory. The material was identified as *P. sepium* by Dr M. Satake, Botanical garden director at Tsukuba Medicinal Plant Research Station, National Institute of Hygienic Science, Japan.

Extraction and isolation Extraction and isolation of **S-4**, **S-5** (**3**) and **S-6** (**4**) were described in a previous paper [1]. **S-4** (387 mg) was subjected to RP-18 CC with $\text{MeOH-H}_2\text{O}$ (3:2) to furnish **S-4a** (**1**, 147 mg) and **S-4b** (**2**, 161 mg). Repeated RP-8 (with $\text{MeOH-H}_2\text{O}$, 7:3) and RP-18 (with $\text{MeOH-H}_2\text{O}$, 3:2) CC of the $\text{CHCl}_3\text{-MeOH}$ (5:1) fraction obtained in an earlier study [1] gave **S-10** (**5**, 3.5 mg). **1**, white powder, mp 182–184°, $[\alpha]_D^{20}$ −16.24° (MeOH, *c* 12), FABMS *m/z* 1187 [$\text{M}(\text{C}_{56}\text{H}_{92}\text{O}_{25})+\text{Na}$]⁺ and 1203 [$\text{M}+\text{K}$]⁺. **2**, white powder, mp 185–187°, $[\alpha]_D^{20}$ −27.16° (MeOH, *c* 0.3), FABMS *m/z* 1187 [$\text{M}(\text{C}_{56}\text{H}_{92}\text{O}_{25})+\text{Na}$]⁺ and 1203 [$\text{M}+\text{K}$]⁺. **3**, white powder, mp 175–177°, $[\alpha]_D^{20}$ −25.22° (EtOH, *c* 1.4), SIMS *m/z* 1124 [$\text{M}(\text{C}_{54}\text{H}_{90}\text{O}_{23})+\text{NH}_4$]⁺. **4**, white powder, mp 181–183°, $[\alpha]_D^{20}$ −22.90° (EtOH, *c* 0.4), SIMS *m/z* 1148 [$\text{M}(\text{C}_{56}\text{H}_{92}\text{O}_{24})+\text{NH}_4$]⁺. **5**, white powder, mp 167–169°, $[\alpha]_D^{20}$ −2.6° (MeOH, *c* 0.2), FABMS *m/z* 819 [$\text{M}(\text{C}_{30}\text{H}_{24}\text{O}_{23})+\text{H}$]⁺, 842 [$\text{M}+\text{Na}+\text{H}$]⁺ and 857 [$\text{M}+\text{K}$]⁺.

Partial acid hydrolysis of 1–4 Each sample (50 mg) was hydrolysed with 0.025 M H_2SO_4 in 50% aq MeOH (3 ml) under reflux for 20 min at 80°. The reaction mixture was diluted with H_2O (10 ml) and the MeOH evapd *in vacuo* at room temp. The residue was partitioned between H_2O and CHCl_3 . The CHCl_3 extract was concentrated and chromatographed on silica gel with EtOAc to give **13** from **3**, and **14** from **1**, **2** and **4**. The aq layer was extracted with *n*-BuOH, and then the BuOH extract was purified by means of RP-18 CC with solvent IV to give **5** (21.5 mg) from **1**, **6** (23 mg) from **2**, **7** (21 mg) from **3** and **4** respectively.

5 was identical with **S-10**. **6**, white powder, mp 179–182°, $[\alpha]_D^{20}$ −38.68° (MeOH, *c* 0.2), FABMS *m/z* 819 [$\text{M}(\text{C}_{30}\text{H}_{24}\text{O}_{23})+\text{H}$]⁺, 842 [$\text{M}+\text{Na}+\text{H}$]⁺ and 857 [$\text{M}+\text{K}$]⁺. **7**, white powder, mp 238–240°, $[\alpha]_D^{20}$ −27.5° (MeOH, *c* 0.2). **13**, colourless needles, mp 115–117°, $[\alpha]_D^{20}$ +18.18° (CHCl_3 , *c* 0.1). ¹H NMR (CDCl_3): δ 1.32 (3H, *d*, *J* = 6.3 Hz, cym-6), 1.35 (3H, *d*, *J* = 6.5 Hz, dig-6), 1.59 (1H, *dq*, *J* = 13.5, 9.1 Hz, cym-2a), 2.16 (1H, *ddd*, *J* = 13.5, 6.2, 2.2 Hz, cym-2b), 3.20 (1H, *dd*, *J* = 9.5, 3.4 Hz, dig-3), 3.34 (1H, *dd*, *J* = 9.2, 3.0 Hz, cym-4), 3.44, 3.47 (3H, *s*, respectively, cym-1 and 3-OMe), 3.52 (3H, *s*, dig-3-OMe), 3.59 (1H, *dd*, *J* = 6.5, 1.1 Hz, dig-5), 3.71 (1H, *dd*, *J* = 9.5, 7.9 Hz, dig-2), 3.81 (1H, *dd*, *J* = 6.0, 3.0 Hz, cym-3), 3.84 (1H, *dd*, *J* = 3.4, 1.1 Hz, dig-4), 3.97 (1H, *dd*, *J* = 9.2, 6.3 Hz, cym-5), 4.30 (1H, *d*, *J* = 7.9 Hz, dig-1), 4.66 (1H, *dd*, *J* = 9.1, 2.2 Hz, cym-1).

14 is described in a previous paper [2]. **Deacetylation of 4 and 14** A soln of either **4** (10 mg) or **14** (4.6 mg) in 0.2 M NaOH (1.5 ml) was warmed at 50° for 2 hr with stirring under N_2 gas. The reaction mixture was neutralized with Amberlite IR-120 and concentrated *in vacuo* to give the crude product **3** from **4** and colourless needles of **13** from **14**. The product **3** was purified by RP-18 CC with solvent III.

Table 1 ^1H NMR spectral data for S-4a (1), S-4b (2), S-5 (3), S-6 (4)

H	8 (CDCl_3)	5	1	12 (CDCl_3)
3 H	3.51 <i>m</i>			3.53 <i>m</i>
6 H	5.35 <i>m</i>	5.33 <i>m</i>	5.33 <i>m</i>	5.35 <i>m</i>
16 H	4.50 <i>ddd</i> (<i>J</i> = 7.8, 5.5, 2.3 Hz)			4.35 <i>ddd</i> (<i>J</i> = 7.8, 6.8, 2.2 Hz)
18 Me	0.89 <i>s</i>	1.04 <i>s</i>	0.96 <i>s</i>	0.69 <i>s</i>
19 Me	1.02 <i>s</i>	1.04 <i>s</i>	1.01 <i>s</i>	1.00 <i>s</i>
20 H	4.13 <i>dq</i> (<i>J</i> = 6.2, 3.6 Hz)	4.25 <i>br</i>	4.25 <i>br</i>	3.91 <i>brq</i> (<i>J</i> = 6.2 Hz)
21 Me	1.31 <i>d</i> (<i>J</i> = 6.2 Hz)	1.67 <i>d</i> (<i>J</i> = 6.2 Hz)	1.67 <i>d</i> (<i>J</i> = 6.1 Hz)	1.27 <i>d</i> (<i>J</i> = 6.2 Hz)
3 cym				
1 H			5.26 <i>dd</i> (<i>J</i> = 9.6, 1.7 Hz)	
6 Me			1.47 <i>d</i> (<i>J</i> = 6.3 Hz)	
OMe			3.41 <i>s</i>	
dig				
1-H			4.73 <i>d</i> (<i>J</i> = 8.0 Hz)	
2-H			5.84 <i>dd</i> (<i>J</i> = 8.0, 10 Hz)	
6 Me			1.57 <i>d</i> (<i>J</i> = 6.4 Hz)	
OMe			3.53 <i>s</i>	
20 dig				
1 H		4.62 <i>d</i> (<i>J</i> = 8.0 Hz)	4.63 <i>d</i> (<i>J</i> = 8.0 Hz)	
2 H		4.92 <i>dd</i> (<i>J</i> = 8.0, 9.7 Hz)	4.93 <i>dd</i> (<i>J</i> = 8.0, 9.6 Hz)	
6 Me		1.46 <i>d</i> (<i>J</i> = 6.3 Hz)	1.45 <i>d</i> (<i>J</i> = 6.3 Hz)	
OMe		3.52 <i>s</i>	3.52 <i>s</i>	
glc				
1 H		5.38 <i>d</i> (<i>J</i> = 7.8 Hz)	5.37 <i>d</i> (<i>J</i> = 7.8 Hz)	
glc'				
1 H		5.47 <i>d</i> (<i>J</i> = 7.8 Hz)	5.46 <i>d</i> (<i>J</i> = 7.8 Hz)	

Acetylation of **5**, **6** and **7** was performed with $\text{Ac}_2\text{O}-\text{C}_5\text{H}_5\text{N}$ (12 hr, room temp.) in the usual way. The EIMS of each acetate showed characteristic fragments at m/z 821, 619, 331.

Acid hydrolysis of **5**, **6** and **7** Each sample (20 mg) was refluxed with 1.5 M H_2SO_4 in 50% aq. MeOH (2 ml) for 1.5 hr on a water bath. The reaction mixture was diluted with H_2O (10 ml) and extracted with CHCl_3 . The CHCl_3 extract was purified by silica gel CC with solvent I to afford about 6 mg of compounds **8**, **12** and Δ^5 -pregnene-3 β ,20(S)-diol [1], respectively. The aq. layer was neutralized with Amberlite IRA-94 and evapd to dryness *in vacuo*. Each sample showed the presence of D-digitalose and D-glucose on silica gel TLC (solvent II and III).

8, white powder, 217–219°, $[\alpha]_D^{20} -15.79^\circ$ (EtOH, *c* 0.1),

EIMS m/z 334 [M^+ , $\text{C}_{21}\text{H}_{34}\text{O}_3$] **12**, white powder, 222–224°, $[\alpha]_D^{20} -60.2^\circ$ (MeOH, *c* 0.1), EIMS m/z 334 [M^+ , $\text{C}_{21}\text{H}_{34}\text{O}_3$]

Acetonide formation from **8** *p*-TsOH (5 mg) was added to a soln of **8** (15 mg) in Me_2CO (3 ml) and the mixture refluxed overnight. The reaction mixture was poured into H_2O and extracted with Et_2O . The Et_2O layer was washed with satd NaHCO_3 soln, dried with dry Na_2SO_4 and coned to yield **9** as a solid. ^1H NMR (CDCl_3) δ 0.90 (3H, *s*, Me-18), 1.03 (3H, *s*, Me-19), 1.20 (3H, *d*, *J* = 6.2 Hz, Me-21), 3.51 (1H, *m*, H-3), 3.85 (1H, *dq*, *J* = 9.5, 6.2 Hz, H-20), 4.16 (1H, *ddd*, *J* = 9.5, 9.2, 1.8 Hz, H-16), 5.36 (1H, *m*, H-6), 1.32 (6H, *s*, $>\text{C}(\text{Me})_2$), ^{13}C NMR (CDCl_3) δ 37.30 (*t*, C-1), 32.14 (*t*, C-2), 71.78 (*d*, C-3), 42.35 (*t*, C-4), 141.95 (*s*, C-5), 121.42 (*d*, C-6), 31.70 (*t*, C-7), 31.14 (*d*, C-8), 50.22 (*d*, C-9).

and related compounds (400 MHz, C_5D_5N , TMS as int standard)

6	2	7	3	4
5.27 m	5.24 m	5.40 m	5.35 m	5.36 m
0.67 s	0.64 s	0.67 s	0.64 s	0.66 s
1.03 s	0.96 s	1.02 s	0.93 s	0.95 s
3.83 br	3.80 br	3.75 br q (<i>J</i> = 6.2 Hz)	3.76 br q (<i>J</i> = 6.3 Hz)	3.76 br q (<i>J</i> = 6.5 Hz)
1.61 d (<i>J</i> = 6.0 Hz)	1.59 d (<i>J</i> = 6.5 Hz)	1.61 d (<i>J</i> = 6.2 Hz)	1.58 d (<i>J</i> = 6.3 Hz)	1.60 d (<i>J</i> = 6.5 Hz)
	5.26 dd (<i>J</i> = 9.6, 1.6 Hz)		5.29 dd (<i>J</i> = 9.6, 1.7 Hz)	5.28 dd (<i>J</i> = 9.6, 1.6 Hz)
	1.46 d (<i>J</i> = 6.3 Hz)		1.56 d (<i>J</i> = 6.3 Hz)	1.47 d (<i>J</i> = 6.25 Hz)
	3.42 s		3.50 s	3.42 s
	4.76 d (<i>J</i> = 8.0 Hz)		4.72 d (<i>J</i> = 7.8 Hz)	4.74 d (<i>J</i> = 8.0 Hz)
	5.83 dd (<i>J</i> = 8.0, 10 Hz)			5.84 dd (<i>J</i> = 8.0, 10 Hz)
	1.57 d (<i>J</i> = 6.5 Hz)		1.65 d (<i>J</i> = 6.3 Hz)	1.58 d (<i>J</i> = 6.5 Hz)
	3.53 s		3.55 s	3.53 s
4.72 d (<i>J</i> = 7.8 Hz)	4.74 d (<i>J</i> = 7.5 Hz)	4.69 d (<i>J</i> = 7.8 Hz)	4.67 d (<i>J</i> = 7.8 Hz)	4.69 d (<i>J</i> = 7.8 Hz)
4.78 br	4.78 br	4.86 dd (<i>J</i> = 7.8, 9.7 Hz)	4.84 dd (<i>J</i> = 7.8, 9.6 Hz)	4.87 dd (<i>J</i> = 7.9, 9.7 Hz)
1.53 d (<i>J</i> = 6.3 Hz)	1.53 d (<i>J</i> = 6.3 Hz)	1.49 d (<i>J</i> = 6.4 Hz)	1.47 d (<i>J</i> = 6.4 Hz)	1.49 d (<i>J</i> = 6.4 Hz)
3.58 s	3.59 s	3.51 s	3.56 s	3.52 s
5.13 d (<i>J</i> = 7.7 Hz)	5.11 d (<i>J</i> = 7.7 Hz)	5.26 d (<i>J</i> = 7.6 Hz)	5.25 d (<i>J</i> = 7.8 Hz)	5.27 d (<i>J</i> = 7.6 Hz)
5.36 d (<i>J</i> = 7.6 Hz)	5.35 d (<i>J</i> = 7.6 Hz)	5.37 d (<i>J</i> = 7.8 Hz)	5.36 d (<i>J</i> = 7.8 Hz)	5.37 d (<i>J</i> = 7.8 Hz)

36.78 (s, C-10), 20.61 (t, C-11), 39.73 (t, C-12), 41.52 (s, C-13), 52.89 (d, C-14), 37.30 (t, C-15), 70.66 (d, C-16), 64.48 (d, C-17), 14.88 (q, C-18), 19.46 (q, C-19), 77.62 (d, C-20), 21.48 (q, C-21), 24.01, 24.98 (q, >C(Me)₂, respectively)

Acetylation of 9 Acetylation of **9** (5 mg) with $Ac_2O-C_5H_5N$ was carried out in the usual way to furnish **10** ¹³C NMR ($CDCl_3$) δ 37.02 (t, C-1), 29.72 (t, C-2), 73.90 (d, C-3), 38.13 (t, C-4), 140.90 (s, C-5), 122.33 (d, C-6), 32.10 (t, C-7), 30.93 (d, C-8), 50.11 (d, C-9), 36.74 (s, C-10), 20.54 (t, C-11), 39.65 (t, C-12), 40.71 (s, C-13), 52.79 (d, C-14), 32.91 (t, C-15), 70.63 (d, C-16), 60.79 (d, C-17), 14.85 (q, C-18), 19.35 (q, C-19), 64.45 (d, C-20), 21.46 (q, C-21), 23.98, 24.95 (q, >C(Me)₂), 99.81 (s, >C(Me)₂), 21.46 (q, Ac-Me), 170.38 (s, Ac-CO)

Preparation of 11 from 10 **10** (5 mg) was refluxed with 0.05 M H_2SO_4 in 50% aq MeOH (1 ml) for 14 min at 60°. The reaction mixture was treated as usual way to yield **11** ¹H NMR ($CDCl_3$) δ 0.89 (3H, s, Me-18), 1.03 (3H, s, Me-19), 1.31 (3H, d, *J* = 6.2 Hz, Me-21), 2.03 (3H, s, Ac), 4.13 (1H, br q, *J* = 6.2 Hz, H-20, 4.50 (1H, *ddd*, *J* = 7.8, 5.5, 2.2 Hz, H-16), 4.59 (1H, *m*, H-3), 5.38 (1H, *m*, H-6), ¹³C NMR ($CDCl_3$) δ 36.98 (t, C-1), 29.72 (t, C-2), 73.91 (d, C-3), 38.12 (t, C-4), 141.95 (s, C-5), 122.33 (d, C-6), 31.87 (t, C-7), 31.09 (d, C-8), 50.24 (d, C-9), 35.62 (s, C-10), 20.53 (t, C-11), 39.22 (t, C-12), 41.10 (s, C-13), 54.24 (d, C-14), 35.62 (t, C-15), 73.19 (d, C-16), 63.04 (d, C-17), 13.96 (q, C-18), 19.32 (q, C-19), 66.69 (d, C-20), 23.64 (q, C-21), 21.42 (q, Ac-Me), 170.55 (s, Ac-CO)

Table 2 ^{13}C NMR spectral data for aglycone moieties of S-4a (**1**), S-4b (**2**), S-5 (**3**), S-6 (**4**) and related compounds (100.6 MHz, $\text{C}_5\text{H}_5\text{N}$, TMS as int. standard)

C	8 (CDCl_3)			12 (CDCl_3)			6	2	7	3	4
	8	5	1	12	6						
1	37.77	37.26	37.72	37.37	37.76	37.17	37.65	37.35	37.76	37.50	37.45
2	32.21	31.69	32.29	30.34	32.18	31.24	32.16	30.35	32.61	30.37	30.33
3	71.25	71.79	71.28	77.43	71.26	71.74	71.20	77.47	71.23	77.79	77.78
4	43.48	42.33	43.50	39.35	43.54	42.31	43.49	39.37	43.47	39.41	39.32
5	142.00	140.88	141.77	140.65	142.06	140.76	141.60	140.51	141.77	140.74	140.67
6	121.07	121.43	121.33	122.01	121.12	121.51	121.48	122.22	121.31	121.98	122.06
7	32.61	31.90	32.65	32.20	32.66	31.65	32.64	32.11	32.17	32.14	32.14
8	31.46	31.15	31.73	31.56	31.56	31.65	31.50	31.36	31.92	31.83	31.60
9	50.56	50.16	50.37	50.25	50.60	50.06	49.99	49.88	50.42	50.36	50.31
10	37.77	36.60	36.93	36.89	37.00	36.45	36.88	36.89	36.86	36.90	36.68
11	20.92	20.62	20.98	20.85	20.76	20.40	20.92	20.85	21.12	21.05	21.04
12	39.57	39.30	39.74	39.62	39.23	38.78	39.43	39.37	39.15	39.07	39.05
13	41.30	41.12	41.28	41.18	42.68	42.40	42.95	42.37	42.55	41.52	41.50
14	54.59	54.33	54.41	54.27	54.54	54.01	53.64	53.54	58.07	58.06	58.03
15	36.51	35.67	35.70	35.62	35.67	34.71	35.82	35.07	26.92	26.86	26.90
16	72.92	73.23	70.96	70.90	77.05	77.62	77.27	77.23	24.42	24.45	24.45
17	63.74	63.07	62.79	62.70	68.24	67.48	68.48	68.46	56.63	56.63	56.58
18	14.23	13.98	13.71	13.62	13.97	13.78	13.96	13.89	12.63	12.62	12.60
19	19.57	19.44	19.59	19.37	19.62	19.42	19.60	19.43	19.56	19.40	19.40
20	65.93	66.71	79.39	79.37	69.42	70.48	82.00	81.94	81.68	81.72	81.71
21	24.07	23.65	22.16	22.13	24.49	23.95	23.75	23.71	23.17	23.19	23.20

Table 3 ^{13}C NMR spectral data for sugar moieties of S-4a (**1**), S-4b (**2**), S-5 (**3**), S-6 (**4**) and related compounds (100.6 MHz, $\text{C}_5\text{H}_5\text{N}$, TMS as int. standard)

C	5	1	6	2	7	3	4	13 (CDCl_3)		14
3 cym										
1		96.30		96.24		96.22	96.23	98.98	99.00	
2		37.14		37.19		37.14	37.12	35.44	35.84	
3		77.43		77.31		77.41	77.36	76.37	77.49	
4		84.21		84.22		83.51	84.21	83.66	82.90	
5		68.80		68.84		70.66	68.78	68.21	69.11	
6		18.51		18.54		18.81	18.49	17.88	18.27	
OMe		58.62		58.68		58.63	58.62	58.31	58.07	
dig										
1		103.56		103.56		106.80	103.56	102.47	106.39	
2		71.48		71.58		70.84	71.40	70.88	70.46	
3		82.30		82.33		84.79	82.27	81.56	84.45	
4		67.86		68.46		69.41	67.79	68.00	68.07	
5		71.42		71.46		71.17	71.40	70.34	70.83	
6		17.12		17.16		17.30	17.13	16.39	16.94	
OMe		56.52		56.58		57.23	56.49	57.34	56.87	
OAc		169.67		169.71			169.68	169.37		
		21.10		21.15			21.11	20.88		
20 dig										
1	104.03	104.01	104.01	104.01	104.19	104.18	104.20			
2	75.53	75.56	75.73	75.72	76.21	76.21	76.22			
3	85.48	85.42	85.67	85.64	85.38	85.39	85.38			
4	68.54	68.45	69.08	69.07	68.36	68.43	68.34			
5	71.56	71.76	71.60	71.58	72.19	72.20	72.16			
6	17.36	17.31	17.28	17.26	17.32	17.30	17.33			
OMe	56.75	56.70	57.15	57.16	56.67	57.23	56.63			

Table 3 *continued*

C	5	1	6	2	7	3	4	¹³ (CDCl ₃)	14
glc									
1	104.28	104.27	105.29	105.29	104.40	104.40	104.44		
2	75.16	75.12	74.51	74.50	75.23	75.24	75.21		
3	77.73	77.70	77.27	77.31	77.77	77.76	77.78		
4	72.10	72.01	70.11	70.11	71.23	71.17	71.40		
5	77.66	77.57	76.80	76.74	77.28	77.41	77.28		
6	69.78	69.75	67.32	67.24	69.95	69.98	69.95		
glc									
1	104.99	104.97	105.48	105.48	105.17	105.18	105.20		
2	74.95	74.97	74.97	74.95	75.45	75.45	75.48		
3	78.29	78.28	78.25	78.23	78.19	78.19	78.22		
4	72.10	72.01	71.05	71.03	71.90	71.90	71.88		
5	78.65	78.59	78.56	78.54	78.19	78.19	78.22		
6	63.04	62.99	62.74	62.72	62.94	62.95	62.92		

REFERENCES

- 1 Itokawa, H., Xu, J. P. and Takeya, K. (1987) *Chem Pharm Bull* **35**, 4524
- 2 Itokawa, H., Xu, J. P., Takeya, K., Watanabe, K. and Shoji, J. (1987) *Chem Pharm Bull*, (in press)
- 3 Kuhn, L. P. (1958) *J. Am Chem Soc* **80**, 5950.
- 4 (1978) *Infrared Absorption Spectroscopy* (Nakanishi, K., Solomon, P. H. and Furutachi, N., eds) Nankodo Press, Tokyo
- 5 Kirk, D. N. and Melo, M. L. (1979) *Steroids* **34**, 683
- 6 Sakuma, S., Kawanishi, S., Shoji, J. and Shibata, S. (1968) *Chem Pharm Bull* **16**, 326
- 7 Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, O. (1977) *Tetrahedron Letters* **175**
- 8 Yoshikawa, K., Takemoto, T. and Arihara, S. (1987) *Yakugaku Zasshi* **107**, 355
- 9 Abe, F. and Yamauchi, T. (1983) *Chem Pharm Bull* **31**, 1199
- 10 Sakuma, S., Kawanishi, S. and Shoji, J. (1980) *Chem Pharm Bull* **28**, 163
- 11 Kawanishi, S., Sakuma, S. and Shoji, J. (1972) *Chem Pharm Bull* **20**, 469